Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hua Fang, ${ }^{\text {a }}$ Jian-Feng Wang, ${ }^{a}$
Xiao-Xia Liu, ${ }^{\text {a }}$ Yu-Fen Zhao ${ }^{a}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\boldsymbol{*}}$
${ }^{\text {a }}$ The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry,
Xiamen University, Xiamen 361005, People's
Republic of China, and ${ }^{\mathbf{b}}$ Department of
Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.072$
ωR factor $=0.207$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Diethyl phenyl(4-pyridylcarbonylamino)methylphosphonate

Two molecules of the title compound, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$, are linked across a center of inversion by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{P}$ amidophosphoryl interactions $[\mathrm{d}(\mathrm{N} \cdots \mathrm{O})=2.894$ (3) \AA], forming a hydrogen-bonded dimer.

Comment

The title compound, (I), was synthesized for a study of its cytotoxicity against the KB cancer cell line. The amidophosphonic acid derivative was found to be moderately cytotoxic with an IC_{50} value of $95 \mu \mathrm{~g} \mathrm{ml}^{-1}$. The compound exists as a centrosymmetric hydrogen-bonded dimer (Fig. 1); the amido N atom interacts with the doubly bonded phosphoryl O atom (Table 2). The $\mathrm{P} 1=\mathrm{O} 5$ double bond is significantly shorter than the $\mathrm{P} 1-\mathrm{O} 3$ and $\mathrm{P} 1-\mathrm{O} 4$ single bonds (Table 1).

(I)

There are only a few related crystal structures having the $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O})-$ fragment that can be used for comparison; one is 3-hydroxy-3-diethoxyphosphoryl-2-oxoindolinone, which is the alcoholysis product of 1,3,2-dioxaphospholanes having the 2-oxoindolinone unit (Gureivich et al., 1998). The amide unit is also involved in hydrogen-bonding interactions with the phosphoryl O atom of a neighboring molecule $[\mathrm{d}(\mathrm{N} \cdots \mathrm{O})=2.824$ (3) \AA], but for this compound the hydroxy group is also involved in hydrogen bonding.

Experimental

The hydrochloride of the α-aminophosphonate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{P}(\mathrm{O})$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}$, was prepared according to the literature procedure of Takahashi et al. (1994). The reagent ($2.79 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in 1,2-dichloroethane (90 ml) to which triethylamine (4 ml) was added, and the solution was added dropwise to isonicotinic acid $(1.23 \mathrm{~g}, 10 \mathrm{mmol})$ in the same solvent. After completion of the reaction, the solvent was removed to give the crude product, which was purified by recrystallization from a $1: 1$ mixture of hexane and dichloroethane. CHN analysis, calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}: \mathrm{C} 58.62$, H 6.08, N 8.04%; found: C 58.44, H 6.10 N 7.95%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$
$M_{r}=348.33$
Monoclinic, C2/c
$a=23.714$ (1) A
$b=8.0928$ (4) \AA
$c=20.012$ (1) \AA
$\beta=110.325$ (1) ${ }^{\circ}$
$V=3601.4(3) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEX area-

detector diffractometer
φ and ω scans
Absorption correction: none
12057 measured reflections
3162 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.207$
$S=1.05$
3162 reflections
221 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
D_{x}=1.285 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 4335
reflections
$\theta=2.3-27.5^{\circ}$
$\mu=0.18 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.35 \times 0.27 \times 0.26 \mathrm{~mm}$

2774 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-28 \rightarrow 28$
$k=-9 \rightarrow 9$
$l=-23 \rightarrow 23$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1172 P)^{2}\right. \\
& \quad+6.3036 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.95 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.32 \mathrm{e}^{-3} .
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{P} 1-\mathrm{O} 3$	$1.559(3)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.330(4)$
$\mathrm{P} 1-\mathrm{O} 4$	$1.565(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.447(4)$
$\mathrm{P} 1-\mathrm{O} 5$	$1.448(2)$	$\mathrm{O} 2-\mathrm{C} 6$	$1.210(4)$
$\mathrm{P} 1-\mathrm{C} 7$	$1.819(3)$	$\mathrm{O} 3-\mathrm{C} 14$	$1.425(5)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.314(6)$	$\mathrm{O} 4-\mathrm{C} 16$	$1.407(5)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.314(7)$		
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	$107.1(2)$	$\mathrm{O} 5-\mathrm{P} 1-\mathrm{C} 7$	$113.2(1)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 5$	$116.0(2)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	$115.9(4)$
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{C} 7$	$103.2(2)$	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7$	$121.6(3)$
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 5$	$108.6(2)$	$\mathrm{C} 14-\mathrm{O} 3-\mathrm{P} 1$	$126.8(3)$
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{C} 7$	$108.3(1)$	$\mathrm{C} 16-\mathrm{O} 4-\mathrm{P} 1$	$125.9(3)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(1)$	$2.06(1)$	$2.894(3)$	$173(3)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

The H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.93 (methine), 0.96 (methylene) and $0.97 \AA$ (methyl)] and were included in the refinement in the riding-model approximation. The displacement parameters were set to $1.5 U_{\text {eq }}(\mathrm{C})$ for the

Figure 1
View of the hydrogen-bonded dimer in (I) (30% displacement ellipsoids). H atoms are drawn as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $1-x, 1-y, 1-z$.]
methyl H atoms and to $1.2 U_{\text {eq }}$ for the other H atoms. The amido H atom was located and refined with an $\mathrm{N}-\mathrm{H}$ distance restraint of 0.85 (1) Å.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the China Postdoctoral Science Foundation, the Natural Science Foundation of Fujian Province, China (No. C0110002), the Key Foundation of Science \& Technology Project of Fujian Province, China (No. 2002H011) and the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Gureivich, P. A., Akhmetova, G. Z., Gubaidullin, A. T., Moskva, V. V. \& Litvinov, I. A. (1998). Russ. J. Gen. Chem. 68, 1501-1506.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Takahashi, H., Yoshioka, M., Imai, N., Onimura, K. \& Kobayashi, S. (1994). Synthesis, pp. 763-764.

